

Ridin' Herd

by RICK RASBY, beef specialist, University of Nebraska

Forage costs and planning ahead

It seems annual cow costs get higher each year, or at least they can potentially increase each year. This year is no exception. Drought has increased forage prices nationally. There are some management practices that are essential to consider this year.

There is no need to keep nonproductive cows around for any reason or any length of time. Pregnancycheck cows as soon as possible, and consider marketing options for those that are open.

Inventory your homegrown forage/ feed supply. Test forages for moisture, crude protein (CP) and energy (TDN). Test summer annuals for nitrates. Once the quality of your forages is known, determine what other feeds and supplements need to be purchased to make up any nutrient deficiencies.

Seek out winter grazing opportunities. Having the cows graze to meet their nutrient needs is less expensive than having to carry harvested forages to them. Dormant winter range with some supplementation can be an inexpensive
option. Crop residues can also be an inexpensive option.

Grazing crop residues

When grazing residue, cattle will select and eat the grain first, followed by the husk and leaf, and finally the cob and stalk. Because of this selection process, the cornstalk residue diet consumed could be very high in energy content (70% TDN) at first to low ($48 \%-52 \%$ TDN) at the end of grazing. Also, as the stocking rate (number of cows per acre) increases, the nutrient content of the residue declines more rapidly as the grain and husk are being removed at a much faster rate.

Cows grazing cornstalks or grain sorghum stubble will consume 25% 50% of the available residue in 30-100 days, depending on stocking density or stocking rate, leaving enough material to prevent soil erosion. In the Midwest, weather records indicate the range in number of continuous grazing days for crop residue is 65-111 days.

Weather can be the most important factor in successfully grazing crop
residue. For example, snow and/or ice cover can reduce or eliminate access. Mud may make grazing difficult and may result in decreased animal performance and forage waste.

During years of heavy snow accumulation, grain sorghum stubble provides better grazing than cornstalks. The grain sorghum head is cut off near the top of the plant, leaving more standing forage in the form of leaves above the accumulated snow.

However, delayed frost, unseasonably warm temperatures and moisture allow grain sorghum plants to remain green or develop new growth after grain harvest. This new green growth, commonly referred to as "suckers," may be high in toxic prussic acid. If "sucker" growth occurs, cattle should not graze
the stubble until at least seven days following a hard freeze.

Variables

Stocking rate influences the amount of grain, husk and leaf available per animal. The amount of grain and the amount of husk available affect diet quality because both are highly digestible. The rate of decline in digestibility is affected by stocking rate, trampling, residue components available and environmental factors. Previous comparisons have shown that gains increase as stocking rate decreases. Stocking rate influences the quality of the diet consumed and, consequently, animal performance.

Residue (leaf and husk) yield is related to grain yield, but hybrids obviously vary in this relationship. With highproducing corn (irrigated or with ample rainfall) there will be about 16 pounds (lb.) of dry leaf and husk per bushel (bu.) of corn yield. The specific relationship is: 1 lb . leaf and husk per acre on a dry-matter basis $=$ ([bu./ acre corn yield $\times 38.2]+429) \times 0.39$. Some residue disappears by trampling and other factors. We estimate 50\% utilization of the leaf and husk.

Instead of remembering this equation, there is a nice spreadsheet available that will help you determine the number of acres at a certain corn yield needed for a
compared to ungrazed areas. Neither corn, soybean nor grain sorghum yields were adversely affected following grazing.

Editor's Note: "Ridin' Herd" is a monthly column written by Rick Rasby, professor of animal science at the University of Nebraska. The column focuses on beef nutrition and its effects on performance and profitability.

